NASA-CR-202415

DEVELOPMENT AND IMPLEMENTATION OF SOFTWARE FOR VISUALIZING

AND EDITING MULTIDIMENSIONAL FLIGHT SIMULATION INPUT DATA

A Thesis
presented to
the Faculty of the College of Engineering
California Polytecnrnic State University

San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Master of Scilence

by
Todd Michael Whelan

September 1996

® 15996
Todd Michael Whelan

ALL RIGHTS RESERVED

APPROVAL PAGE

TITLE: DEVELOPMENT AND IMPLEMENTATION OF SOFTWARE FOR VISUALIZING AND
EDITING MULTIDIMENSIONAL FLIGHT SIMULATION INPUT DATA

AUTHOR: Todd Michael Whelan

DATE SUBMITTED: September 23, 1996

Dr. Daniel J. Biezad

Adviser Signature

Dr. Jin Tso

Committee Member Signature

Dr. Estelle Basor

Committee Member Signature

iii

Abstract

In a real-time or batch mode simulation that is designed to model
aircraft dynamics over a wide range of flight conditions, a table look-
up scheme is implemented to determine the forces and moments on the
vehicle based upon the values of parameters such as angle of attack,
altitude, Mach number, and control surface deflections. Simulation
Bercdynamic Variable Interface (SAVI) is a graphical user interface to
the flight simulation input data, designed to operate on workstations
that support X Windows. The purpose of the application is to provide
two and three dimensional visualization of the data, to allow an
intuitive sense of the data set. SAVI also allows the user to
manipulate the data, either to conduct an interactive study of the
influence of changes on the vehicle dynamics, or to make revisions to
the data set based on new information such as flight test. This paper
discusses the reasons for developing the application, provides an
overview of its capabilities, and outlines the software architecture and

cperating environment.

iv

Acknowledgments

I owe many thanks to those that provided insightful suggestions,
answered numerous questions, and attended countless progress briefings
as the product evolved. In particular Lawrence Schilling, who
instigating the project; my advisor Dr. Daniel J. Biezad; Ken Norlin,
Jeanette Le-Antoniewicz, and Marlin Pickett, who each had a turn
receiving the majority of my gquestions; and the rest of the
XFE/Simulation branch at NASA Dryden for their support. I alsoc owe a
special thanks to Nicholas Kantartzis, who allowed me to get my foot in
the door at NASA Dryden in ancther program. That opportunity has led to
the fantastic experiences I have had in a total of six summer quarters

and five winter breaks at the Flight Research Center.

This work was funded by NASA grant NAG 2-833, in response to the
oroposal titled “Intuitive Generic Displays for Real Time Selection of
Zerodynamic Coefficients During Flight Simulation.” The Principal

Investigator was Dr. Daniel J. Biezad, professor of Aeronautical

)

ng.neering at California Polytechnic State University at San Luis

O

D1spo.

SAVI is available upon reguest from the National Aeronautics and
Space Administration. For mecre information, contact:
Sr. Daniel J. Biezad (80%) 756-5126 dbiezad@oboe.calpely.edu

Todd Whelan twhelan@daniel.aero.calpoly.edu

Taple of Contents

Page

LiSt OF FlQUIES ittt ittt ittt ittt vii
TntroducCtion. v ittt e e s e Error! Bookmark not defined.
BACKGTOUNA + s et e ettt ettt ma s e e e 1
Educational Application of SAVIt 3
BT 108 o =S T T R I 5
ACSIM Handling Qualities Evaluation Landing Task...............ooennnnn 5
=S oYY Lo KoY 3 A T I I I I R 7
TP lementatlon. « vttt ittt e 10
R U1 o I 14
The SAVI DESKEOD ¢ttt it et it it et et e e a b ia s 16
SE1leCting POLMES « v ettt e it e e e e i7
Editing BlQoritnms oot e e e 18
Developing Editing ALGOrithmSt i8
Editing Algoritams for the Two-Dimensional Plotc....... 19
Editing Algerithms for the Three-Dimensional Plot v iiiii i 23
Urevenly Spaced Data .ot v et me it 25
POSTSCript OUEDUL « ittt it et s et e e 26
ST’ S MANUAL + ittt e it e it e et et e it e it e s e s 27
IOTe e Lol i O I e) o U= I 28

vi

Introduction
Background

The Simulation Aerodynamic Variable Interface, or SAVI (pronounced
“savvy”), is a software application that has been designed to
graphically visualize and manipulate multidimensional sets of data. It
has been developed for the flight simulation department at the National
Aeronautics and Space Administration (NASA) Dryden Flight Research
Center. Cryden is located at Edwards Air Force Base, California, home
of the Air Force Flight Test Center. SAVI allows the engineers to
visualize and manipulate the multidimensional data sets that form the
input for the flight simulators and model the aircraft dynamics.

The NASA simulators at Dryden are fixed-base, i.e. without a motion
system to mcve the cockpit and mimic the simulated aircraft’s attitude.
The simulators have forward-looking visuals that consist of a television
projection system for out-the-window graphics and a heads-up display
(HUD) overlay. These are engineering simulators, used for the
development and testing of research aircraft. The research test pilots
occasicnally rehearse maneuvers before a test flight, or evaluate the
handling gualities of proposed flight control system or airframe
modifications. They are high fidelizy, six-degree-of-freedom
simulators, capable of accurately mcdeling nonlinear responses over a
large envelope of operating conditions.

The ability to model these dynamic responses so well is the result
of a table-look-up scheme used to provide the inputs to the equations of
motion. For example, to determine the forces and moments on the
aircraft due to aerodynamic loads, the contributions of different
components will be added together. Consider the change in the lift
force moefficient that is produced by a particular control surface
deflectionr. This effect may have been measured in a wind tunnel as a
functicn cf angle of attack, Mach number and surface deflection angle.

This information would be stored in computer memory as a three-

dimensional array, and using the current values of these three
independent variables the simulator can interpolate between the provided
data points to calculate the force contribution. While this technique
can allow the simulator to model complex nonlinear dynamics, it requires
large amounts of input data. In addition, when the tables of values are
a function of more than two independent variables, the input files
become more and more difficult to interpret in text form.

Until now, the input data that determines the forces and moments in
the flight simulators at the Dryden Flight Research Facility were
accessible only as text files. If the data was to be modified or
updated in any way, a particular value had to be found in a large,
miltidimensional table and changed by hand. This was a time consuming
crocess, and prone tc errors. In addition, it was impossible to
visualize the data set, which could provide insight into the nature of
an air vehicle’s Zynamics. It was also difficult to confirm that the
data was an accurate representation cf information originally provided
tc the simulation engineer as graphs or charts.

In response tc these challenges, NASA requested a solution that
would enable interactive studies to be conducted with the simulators.
MNASA envisioned the simulaticon engineer being able to halt the simulator
remporarily, rapidly modify a region of the data set, and immediately
allow a pilort tc svaluate the effects. In this way, an intuitive sense
of the critical rarameters effecting aircraft performance could be
cultivated, and thecretical studies could be undertaken.

Occasionally, nowever, the simulated behavior of an aircraft needs
t- be modified in a different way than striving for a qualitative,
thecretical optimum. For example, & prototype aircraft may exhibit a
chencmenon in flight test that was not predicted by the simulation. It
cecomes necessary to determine what part of the data set is not

providing an accurate model, and an iterative process 1s applied in

order to produce simulation time histories that will overlay those
observed in flight test. This process will also benefit greatly from
the interactive, graphical interface to the input data that SAVI
provides.

nithough SAVI has been designed for immediate use in flight
simulation, the tool can be applied to any task that would benefit from
the capability to visualize and edit a multidimensional data set.
SAVI's power is in its ability to portray and manipulate data in which
the dependent variables are a function of one or many parameters.

Educational Application of SAVI

In addition to its utilization at NASA Dryden, SAVI is being
implemented as a member of the Pangloss software suite. The Pangloss
project is an ongoing collaborative effort being undertaken by
undergraduate and graduate students at Cal Poly. The majority of the
students involved are from within the Aeronautical Engineering
department, but the group enccmpasses other academic disciplines as
well. The main effort of the Pangloss project is to automate the
preliminary design process of aircraft as much as possible, by
developing new software tcols and creating interfaces between existing
cnes. Primary efforts include implementing multidisciplinary design
orincigles, and avoiding “black box” tools that detract from the
software’s educational value. The components of Pangloss that are
related to SAVI include ACSYNT, PREDAVCR, and ACSIM.

ACSYNT, which is an acronym for BRircraft Synthesis, is an aircraft

design and optimization application. It includes a geometry package
fhat can pe used to quickly generate complex aircraft shapes from basic
comporents. This geometry is used within ACSYNT, in conjunction with

aerodynamic, performance, eccrnomic and other input parameters, to
analyze the alrcraft design. The geometry information can also,

howewver, De used by other programs.

PREDAVOR is an example of such a program, which uses the ACSYNT
geometry output as input to a vortex lattice analysis. PREDAVOR
calculates the forces and moments on the geometry at different
airspeeds, angles of attack and sideslip, and control deflections,
generating tables of stability and control derivatives. These tables
can then be fed intoc the flight simulation program that was developed
for the Pangloss project, ACSIM.

ACSIM is a six-degree-cf-freedom real-time flight simulation
program. It was originally designed to work with a single set of
stability and control data in a linearized model about an equilibrium
flight condition. ACSIM is being expanded, however, to implement a
table-look-up scheme similar to the one used at Dryden, and therefore
wil. be able to model an aircraft’s dynamics cver a wider operating
envelope. The primary strength of ACSIM is the inclusicn of two handling
gual:ity evaluation tasks. The first task, shown in Figure 1, 1s an up-
and-away tracking task in which the simulator pilot attempts to point
the nose of the aircraft at a target moving through space. The target
is in the shape of a cross, with lights that alternate randomly at the
ends of the arms. The second task, shown in Figure 2, is & landing
approach in which the simulator pilot flies to a runway and 1s graded on
deviating from the extended centerline of the runway, and flying above

or beiow the desired glidepath angle.

wlpbae: 7,

ithees

Figure I

ACSIM Handling Qualities Ewvaluation Up-and-Away Task

abpdne: - IF

i L

Figure 2

ACSIM Handling Qualiries =Zvaluation Landing Task

Using SAVI, the student will be able to visualize the stability
and control data set coming from PREDAVCR, gaining insight into its
trends and how the aircraft dynamics parameters relate to each other.
The student may also make modifications to portions of the flight
envelope, and then evaluate the effects of the changes by flying the

handling qualities evaluation tasks in ACSIM.

Methodology

Development of the project began by researching the needs and
desires of the engineers that would be the end users, inventing
technigues that would be useful for looking at the data, and creating
methods for changing the values. Emphasis was placed upon producing an
interface that is intuitive and consistent with other computer
applications, and consideration was given to portability of the source
code to various computer platforms. The program must also be conducive
to future additions and further improvements by another programmer.

It was realized from the beginning that the program would have to
pe vary flexible. It must be compatible with any of the flight
simulations at Dryden, and be able to accept any number of dependent
variables within the data set. Each variable may be a function of any
number of independent parameters, which would produce a large and
drastically varying number of data points for each variable. However,
sizing every array to accomodate the largest number of data points

vpected in a variable would require far too much computer memory.

o

Therefore, dynamic memcry allocation became a requirement for the SAVI
data architecture.

Research of data management techniques led to the implementation of
~he “linked list” concept, a common technique for dynamically storing
znd manipulating sets of information of different sizes {(Tenenbaum). A
Zinked list makes extensive use of the “pointer”, a variable type used
‘n the C programming language that stores the memory location of another
sariable. These are represented in Figure 3 by the boxes that have
srrows emanating from them, “pointing” to other variables. Another
=ntity used to build the linked list is a “structure”, which is an
ancapsulation of several variables. The variables within the structure
may be of different types, such as floating point values, integers,

~haracter strings, or pointers. By including a pointer within a

structure that can point to another structure of its own type, the
structures can be linked together into a chain that can have links added

or taken away.

Independent Dependent
Variables Variables
DependenciesJ
\ Y
/
/
//"
Y
Y
/
i NI

Figure 3

SAVI Data Architecture in Memory

The next issue to consider was the implications of the windowing
environment in developing the SAVI application. X-Windows appears to be
the standard windowing envirconment for werkstation computers. This 1is
the case for the Sun and Silicon Graphics systems currently in place at
Dryden, and it appears that any future alternative platform will be the
same in this regard.

Within the X-Windows environment, there are different sets of
“toolkits”, or libraries of programming objects. These toclkits create
the elements of the graphical interface, such as windows, buttons,
menus, and text fields, as well as complex combinations like file

browsers. The programming objects “know” how to handle their own basic

behaviors automatically, such as popping up a menu when a particular
button is clicked, or redrawing itself when it is covered by another
window and then uncovered again. By adopting a standard for the toolkit
and style to be used in graphical interface programs, it helps the
different applications emulate the same “look and feel”. In this way, a
computer user that is familiar with one application can very easily
start using another, because basic things look and act the same. The
true test of a graphical interface design is how easily a new user can
begin using it, without having to refer to a manual or to help
documentation.

At the beginning of this project, OpenLook and Motif had emerged
as the dominant toolkits for X-Windows programs with graphical
interfaces. OpenLook had been gaining in popularity, but Motif was
sti’l more widely used. Motif was also being used for other
app.icaticns being developed at Dryden. The decision was therefore made
to proceed with the Motif library, and almost all of the new software
teing developed for workstaticns today is based on the same decision.

Some consideration was given to choose the programming language for
developing SAVI. The most appropriate options include FORTRAN, C++, and
C. Although FORTRAN is used extensively in the simulations at Dryden,
it was not considered a viable option, since the X-Windows and Motif
routines and include files are written in C. All of the programming
examples in the reference manuals are written in C, as well. Another
opticn would be to use the C++ programming language, which is a superset
cf C and would support calls to the ¥-Windows and Motif subroutines.

C++ has been gaining in popularity and acceptance over C; however, C
code 1s still much more commorn and widely known at Dryden, and the C
compllers are more readily available. These facts lead to the decision

o develop the application in C.

10

Implementation

When possible, the graphical interface portions of SAVI were built
with the Motif toolkit, which is a standardized set of X Windows
routines that create objects called “widgets”, such as pulldown menus,
scroll bars, buttons, and more complex combinations like file browsers.
These routines encapsulate many operations in X Windows, create
programming objects that handle many operations automatically, and
provide a consistent look and feel between different graphical
applicaticns. The control window for SAVI, shown in Figure 4, 1is an
example of a collection of Motif widgets. A software application called
X-Designer was utilized to build the initial skeleton code for SAVI. X-
Designer is an interface builder, and will generate the source code to
construct the menus, buttons, and other widgets, leaving “stubs” for a
programmer to add customized text, color, and functionality to the
interface. In many cases the code that was generated by X-Designer was
used as examples to learn from and expand upon. Another source of
exanples was the set of programming and reference manuals published by
Q'Reilly & Associates. These books also provided the information
necessary to learn and implement the custom features not part of the

Motif tocolkit.

11

File Edit Plot Edit 3D ‘ ,l_-l_emlj

View: As a function.of. | ALPHA1 £

N]- -70

L And as a function of: 'DECAN o]

Where: JALPHAT]=80
xing the value ,

pcLcan ||
DCLLEF
 ocLTEL

DCMCANT v

Figure 4

SAVI Control Window

The actual plotting and graphing of the curves needed to be drawn
line by line with calls to basic X Windows graphics routines. The code
to handle the mouse events generated by clicks and drags within the plot
windows alsc had to be written by hand. Routines were written to plot
the curves and lapel the axes for the two dimensional graphs and the
three-dimensional plot, shown in Figure 5. A transformation matrix is
maintained for =rne three-dimensional view, allowing the user to rotate
the plot with the scrollbars beside and pelow the plot. The effect is
an animated mcTion of the surface, which helps the user visualize the
rhree-dimensional shape. As an additional aid to comprehending the
shape of the data, routines have Dbeen implemented to convert the
wireframe in-s a collection of polygon “tiles”. By sorting the tiles
fyom back to front according to current plot rotation and drawing them
in order, nearer tiles are drawn over parts of previously drawn distant

ones to effectively portray a solid-looking surface.

12

7
= My;ﬁ%ﬁ

File Edt Plot Edit 30 Help

As 8 function ot j ALPHAT £}
Where: IDECANI =-70

2 20s And as a function of [DECAN &3 |

> A
DCDLEF

FONPUNR IR where: [ALPHAT | - 90
DCLLEF Fixing the values of:
DCLTEL

DCLTER MACH] =0

DCMCAN] &

Figure 5

SAVI Desktop

Development of the user interface portions of SAVI began with X-
Designer, a graphical user interface builder. X-Designer was used to
construct the skeleton of the code that defines the basic layout of the
pulldown menus in the control window, and the layout of the plct
windows. X-Designer will generate the C code to create buttons,
windows, slider bars, menus, and other graphical interface objects. The
orofgrammer then writes the software routines that give the widgets
cusrcmized functionality. After some preliminary work in generating

i~ windeows and widgets and studying the resulting code, a point was

ta

i

reached where custom layouts had to be written by hand.

12

-.—,// ////y w '

File Edt Plot Edit 3D Heip [Fix Valuw of DECAN:

As afunction of § ALPHAT 23
Where: IDECANI =-70

And as & function of fDECAN &3

where: faLPHAt |« a0
Fixing the values of:

] -o

Figure 5

SAVI Desktop

Development of the user interface portions of SAVI began with X-
Designer, a graphical user interface builder. X-Designer was used to
construct the skeleton of the code that defines the basic layout of the
pulldown menus in the control window, and the layout of the plot
windows. X-Designer will generate the C code to create buttons,
windows, slider bars, menus, and other graphical interface objects. The
crogrammer then writes the software routines that give the widgets
customized functiornalizy. After some preliminary werk in generating

asic windows and widgets and studying the resulting code, a point was

e}

reached where custom layouts had toc be written by hand.

13

Platform-specific routines were avoided in creating SAVI, and the C
code was written to the lowest common denominator of compilers.
Originally, the code was written to the ANSI standard in the expectation
that virtually any compiler would support it. This was not the case, as
was discovered when using the older Sun C compiler. The code was then
reverted to the style originally suggested by Kernighan and Ritchie.

The particular architecture used by SAVI to store the data in
memory is shown in Figure 3. To illustrate how the information is
arranged, begin with the box marked “Dependent Variables”. This box
represents a pointer to the first member in the linked list of dependent
variables. Starting with this pointer and the name of a dependent
variable of interest, the list can be descended, checking the name
stored in each structure. When a match is found, a member of that
structure will point to a list of the independent parameters of which
the variable is a function. This list is a linked list of pointers,
each of which leads to a structure that contains all the information
associated with the applicable independent variable.

For example, suppose information 1s needed about the dependent
variable called CmAlpha. The dependent variable linked list is
descended until the structure containing the name “CmAlpha” 1is
encountered. Following the pointer to its list of independent
variables, and following each of the pointers in this list in turn,
structures for “Alpha”, "“Beta”, “Mach”, and “Altitude” would be found.
The arrays of data for each of these independent variables would
indicate the position on the horizontal axis above which tc plot the
CmAlipgha values.

The source code has been compiled and executed successfully on
both Sun and Silicon Graphics platforms, using three different C
complilers. Theoretically, the application could also be used on a
perscrnal computer that is running the LINUX operating system, with X

Windows and the Motlf environment.

14

Results

The windows of the SAVI desktop are shown in Figure 5. The
individual windows are shown in Figures 4, 6 and 7. When the
applicaticn is launched, the windows appear on the terminal screen with
blank plots. Data can be accessed for display and editing in two ways,
either from a data file or by interfacing with simulation memory. A
data file is opened by selecting the “Open” button in the “File”
pulldown menu, which creates a file browser for selecting the file. The
input file is interpreted, and a list of the dependent variables appears
in the scrolled list shown in Figure 4. The simulation memory interface
is set up by selected “Simulation Interface” from the “File” pulldown
menu, and the list cf dependent variables again appears in the scrolled
list shown in Figure 4. When a variable is selected from the list,
other menus appear in the control window, which allow the independent
parameters to be chosen to plot against. In the case of variables that
are a function of more than two parameters, additional menus allow the
user to fix the values of the other parameters, selecting the

appropriate data surface to view.

15

DCDCAN

///////

e
o
i

,

Savi Three-Cimensicna. Plct Window

16

If the dependent variable is a function of only one parameter, the
appropriate curve 1is drawn in the primary two-dimensional plot window,
as shown in Figure 6. For variables that are a function of two or more
parameters, another curve is shown in the secondary two-dimensional plot
window, as shown in Figure 5. This curve is orthogonal to the first,
and they are each highlighted in different colors along the appropriate
lines in the three-dimensional plot window, as shown in Figure 7. The
curves to be shown in the two-dimensional plots can be chosen with the
menus of dependency values in the control window, or the user can click
on the three-dimensional surface and the nearest intersection is used to
generate appropriate curves.

The SAVI Desktop

The controi window displays a list of the dependent variables that
were found in the data file, or that were found in simulation shared
memory. The control window also contains the menus that control file
input and output, modify the plot appearance, select the current editing
function, and launch the interactive on-line help.

The primary two-dimensional plot is color-coded, with the data
points designated as red '+’ symbols and the selected cnes as blue
d:amonds. The user can zoom in to look at a region of the curve close
up, and it is in this window that the user may apply the two-dimensional
2diting algorithms.

For variables that are a function of more than one parameter, a
secondary two-dimensional plot is generated. It also is color-coded
witn the points marked with green ‘+’ symbols, and the selected points
marked with blue diamonds. If points are selected in both two-
dimensional plots, it is analogous to selecting rows and columns of the
matrix of points that make up the three-dimensicnal plot. These
selected rows and columns define the rectangular region in the matrix

that will be the target of the three-dimensional editing algorithms.

18

and column is selected become highlighted, and subsequent editing

commands are applied to those points.

Editing Algorithms

Developing Editing Algorithms

In developing the different algorithms for editing values within
the data set, two design philosophies were applied. The first was to
strike a balance between the power and the complexity of the editing
operation, to give the user as many options as possible without losing
the intuitive sense of the application. It is undesirable to have data
affected in ways that were not intended, even worse to change it in ways
that the user in unaware of. Therefore, all of the editing routines
operate on data that can be seen at one time in a single curve or on a
single data surface.

The second philosophy in designing the editing algorithms was to
create simple techniques that could be combined like building blocks to
construct complex results. This is demonstrated by the surface shown in

Figure 8, which was created with three simple operations.

19

CLO

=
4////‘\':

>

./////////77};/////

=

,‘s:é{{/{{{/{{._//////éfé/f////
e%?_4§>/,

Figure 8

Complex Surface Generated from Siméle Editing Operations

Editing Algorithms for the Two-Dimensional Plot

For the purpose of displaying the results of the editing
operations, consider a set of points at a value of 1.0 as shown in
Figure 9. Holding the <shift> key down on the keyboard and depressing
the left mouse button while the pointer is in the primary two-
dimensional plot window will move any of the selected points onto the
imaginary horizontal line that passes through the pointer, as shown in
Figure 10. 1In this way, one or more values can be “dragged” to a
desired value. While the drag operation is taking place, a digital
readout above the two-dimensional plot will indicate the current value
that the mouse is pcinting to. This particular feature will work
cutside the drag operation, alsc; if no polnts are selected and the

<shift><left mouse> combination is used over a data point, 1its value can

be more accuratel.y read from the graph.

Two-Dimensional Data Before the Editing Operations

1.00655

AABALOAASESESEN
POFOFOOVOVVCVO

Figure 10

Two-Dimensional Data After a Drag, Input Value, Constant Delta,
or Constant Multiple Editing Operation

5

If the value of a selected point or polnts needs to be set more

accurately than by the clicx-and-3rag rethod, the value can be input

20

20

&)

Figure 9

Two-Dimensional Data Before the Editing Operations

™

1.00653
1.01

1.005

il bl i beri ol

|
2
<

1

Two-Dimensional Data After a Drag, Input Value, Constant Delta,
or Cornstant Multiple Editing Operation

If the value of a se’_ected peint or pceints needs to be set more

accurately than by the cllck-and-drag methcd, the value can be input

21

directly from the keyboard. This operation is another way to produce
the results shown in Figure 10.

A set of selected points can be increased or decreased by a fixed
amount by providing a positive or negative additive delta that is added
to each peint in turn. This operation is a third way to produce the
results shown in Figure 10. The same effect can be achieved a fourth
way with the application of a constant multiplier, in which all of the
points are multiplied by a coefficient input from the keyboard.

After these initial editing capabilities where added, it was
realized that more sophisticated algorithms needed to be developed.
Consider that for each particular flight state of the aircraft, or each
combination of values of the independent variables, the simulator table-
look-up scheme will determine a value by interpclating between the
colints in the immediate vicinity. If the data i1s changed in a small
region to match & flight characteristic, or if the change is not blended
smcothly into the surrounding region, the simulated dynamics will work
well at the medified flight state but change quickly back to the old
behavior within a single interval of data. Therefore, some editing
algorithms were developed that would apply the full delta or multiple at
a point, and then blend smocothly to the old values over the selected
interval. OCne method tapers the changes with a linear profile, and the
cther uses a sinuscid curve.

The first class of blended editing methods is termed the “variable
delta”. As shown in Figure 11, the center of the region is changed by
the full wvalue, with the delta decreasing linearly to zero and leaving
the endpoints unaffected. The second type of delta is demonstrated in
Figure 12, in which the function added to the region is one period of a
sinusoid. The sinusoid is scaled such that the minima of zero occur at

the endpoints, and the maximum occurs at the center of the region.

-
0]
=]
o
o]
b2y
5
0]
s
1]
r
oy
0]

G
b
0]
a1
0]
—
8}
“t

¥
-
W
9]
%)
[0
]
r
&)
]
4]
Q.
-
ot

1.
1.
1.
1.
1
1
1
1
1

e X

chabadabebela il obadal g

22

P

Figure 11

Two-Dimensional Linear Delta Editing Operation

[N

bl el

o

B . T S S S

B
5]
4
3
2
A
1

IREERN

BER

™

Figure 12

Two-Dimensicnal Sinuscid Delta Editing Operation

2 multipli=sr is very similar 2o the variable delta, with

the regicn receiving zhe Zull affect but the endpoints

ing function is multiplied

23

by the original curve, with endpoints at a value of one and the center
at the full multiplier. The linear multiplier produces the same effect
as shown in Figure 11, and the sinusoid multiplier produces the same
effect as shown in Figure 12.

Editing Algorithms for the Three-Dimensional Plot

Once points have been selected in both two-dimensional plots to
define a region on the three-dimensional surface, the three-dimensional
editing algorithms can be applied to these points.

There is no direct correlation to the click-and-drag operation, but
the user can input a value for the points directly, apply a constant
delta, or a constant multiple in the same manner as the two-dimensional
vlots.

The variable delta and variable multiple work slightly differently
than the two-dimensicnal case, however. As shown in Figure 13, applying
the three dimensional linear delta to a region adds a pyramid shaped
function, increasing the point in the center by the full amount of the
delta and tapering down linearly to the old values at the edge. The
effect of the sinuscid delta is shown in Figure 14, in which the added

furction is a sinusoid in both directions.

24

Figure 13

Three-Dimensicnal Linear Delta Editing Operation

Figure 14

Three-Dimensicnal Sinuscid Delta Editing Operation

25

The linear and sinusoid delta can be combined, as shown in Figure
15, in which the blend is linear in one direction and sinusocidal in the

other.

Figure 15

Three-Dimensional Combination of Linear
and Sinusoid Editing Operations

Unevenly Spaced Data

During development, when dealing with unevenly spaced or sparsely
spaced data, it was often noted that none of the points were receiving
the full effect of the variable delta or variable multiple edit
operations. This was at first misinterpreted as a problem with the
code, but when it was realized that a point simply did not correspond
with the location of the peak, it was assumed that the end user may feel
similar confusion. The “center” of the region in the variable delta and
variable multiple editing algorithms is now determined by counting the

number of selected pcints, rather that averaging the horizontal values

27

User’s Manual

Finally, on-line interactive help has been installed for the user,
in the form of HTML with hypertext. It is in the same format at World
Wide Web (WWW) pages, and is accessed from within the application by

launching a web browser to view the help file.

28

Conclusions

SAVI is a powerful, intuitive graphical user interface to
multidimensional data sets, such as flight simulation input data. It
presents the user with a look and feel consistent with other
applications, and is written with C code that is portable to various
computer platforms. SAVI will be a useful and productive tool for the
simulation engineers at Dryden, as well as members of other groups at
NASA such as aerodynamics, propulsion, and flight controls engineers,
who often provide the data models for the aircraft simulations. For the
first time, the data can be viewed as a function of any one or two of
its dependencies, and the values can be quickly modified in an intuitive
way.

SAVI will also have educational wvalue at the university level, and
is in the process of being implemented as a tocl in the undergraduate
Aeronautical Engineering curriculum. It will enable students to
visualize the nature of an aircraft simulation data set, and begin to
develop an intuitive sense of aircraft dynamics. In addition, SAVI will
e used as a tool for working with data generated by students in their
cwn preliminary design of aircraft. It has the potential to be used in
assessing the effects of design changes on performance, stability and
control, and handling qualities, or for updating a data set with the

results of different prediction techniques.

